Conditional expectation given a sigma-algebra \(\mathcal{G}\)
\[\forall G \in \mathcal{G}, \quad \int_G X(w) dP(w) = \int_G E[X|\mathcal{G}](w)dP(w)\]
Conditional expectation expressed by simple functions
For simplicity and without loss of generality, I limit the situation to be \(\mathcal{G}=(\emptyset, G, G^\complement, \Omega)\).
\[E[X|\mathcal{G}](\omega)=E[X|G]1_{G}(\omega)+E[X|G^\complement]1_{G^\complement}(\omega)\tag{1}\]
Note that \(E[X|\mathcal{G}](w)\) is a function of \(\omega \in \Omega\) and \(E[X|G], E[X|G^\complement]\) are constants.
Conditional expectation given a set \(G\)
Set a sigma-algebra generated by the set \(G\) as \(\mathcal{G}=(\emptyset, G, G^\complement, \Omega)\) then
\[E[X|G]=\frac{E[X1_{G}]}{P(G)}\]
holds by intergrating both sides of Equation \((1)\) with respect to the set \(G\).
'통계' 카테고리의 다른 글
Copula, 그리고 multiple response regression에 대한 단상 (0) | 2025.06.20 |
---|---|
Probability integral transform (0) | 2025.06.20 |
Monotone Mapping (0) | 2025.03.25 |
Measure theoretic description of change-of-variables (0) | 2025.01.01 |
Measure theoretic description of KL divergence (0) | 2024.12.31 |