Definition
A metric space is an ordered pair \((M, d)\) where \(M\) is a set and \(d\) is a metric on \(M\).
\[d: M\times M \rightarrow \mathbb{R}\]
1. \(d(x, x) = 0\)
2. \(d(x,y) > 0, x \ne y\)
3. \(d(x,y)=d(y,x)\)
4. \(d(x,z) \le d(x,y)+d(y,z)\)
'통계' 카테고리의 다른 글
| Covariance matrix의 다양한 이름들 & Autocorrelation matrix (0) | 2024.01.17 |
|---|---|
| Rightarrow vs mapsto (1) | 2024.01.10 |
| 확률 P와 기대값의 부등식 (0) | 2023.12.25 |
| Limsup Liminf Intution (0) | 2023.12.25 |
| Maximum A Posteriori (MAP) (0) | 2023.12.25 |