1. Partial Sum
$$ \left\{S_n=\sum_{i=1}^n a_i\right\}_{n=1}^\infty\quad \mathrm{converges}\quad\rightarrow \quad \sum_{i=1}^n a_i\quad \mathrm{converges} $$
$$\left\{S_n=\sum_{i=1}^n a_i\right\}_{n=1}^\infty\quad \mathrm{diverges}\quad\rightarrow \quad \sum_{i=1}^n a_i \quad \mathrm{diverges}$$
2. Cauchy Criterion
$$\forall \epsilon >0,\;\exists N \quad s.t.$$
$$n>m>N\;\rightarrow\;\left|\sum_{i=m+1}^na_i\right|<\epsilon$$
3. Absolute Convergence
$$\sum_{n=1}^\infty |a_n| \;\rightarrow\;c\quad \Rightarrow \quad \sum_{n=1}^\infty a_n \;\rightarrow\;d$$
4. (\(a_n>0\)) Comparison Test
\(a_n, b_n > 0\) and \(a_n \leq b_n\) for all \(n\geq N_0\),
$$\sum_{n=1}^\infty b_n \;\mathrm{converges}\quad\rightarrow\quad \sum_{n=1}^\infty a_n\;\mathrm{converges}$$
$$\sum_{n=1}^\infty a_n \;\mathrm{diverges}\quad\rightarrow\quad \sum_{n=1}^\infty b_n\;\mathrm{diverges}$$
5. (\(a_n>0\)) Fractional Comparison Test
\(a_n, b_n > 0\) and \(\lim_{n\rightarrow\infty}a_n/b_n=c\)
\(\sum_{n=1}^\infty a_n\) and \(\sum_{n=1}^\infty b_n\) are both convergent, or both divergent.
6. (\(a_n>0\)) Ratio Test
Suppose \(a_n>0\).
1. \(\limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}<1\) \(\rightarrow\) \(\sum_{n=1}^\infty a_n\) converges.
2. \(\liminf_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}>1\) \(\rightarrow\) \(\sum_{n=1}^\infty a_n\) diverges.
3. \(\liminf_{n\rightarrow \infty}\frac{a_{n+1}}{a_n} \leq 1 \leq \limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}\) \(\rightarrow\) no conclusion.
7. (\(a_n>0\)) Root Test
Suppose \(a_n>0\) and \(\limsup_{n\rightarrow\infty}a_n^{\frac{1}{n}}=\rho\)
1. \(\rho<1\) \(\rightarrow\) \(\sum_{n=1}^\infty a_n\) converges.
2. \(\rho>1\) \(\rightarrow\) \(\sum_{n=1}^\infty a_n\) diverges.
3. \(\rho=1\) \(\rightarrow\) no conclusion.
8. (\(a_n>0\), monotone decreasing) Condensation Test
\(\sum_{n=1}^\infty a_n\) converges iff \(\sum_{n=1}^\infty 2^na_{2^n}\) converges.
9. (\(a_n>0\), monotone decreasing) Alternating Series Test
If \(a_n\rightarrow 0\) as \(n\rightarrow\infty\), then \(\sum_{n=1}^\infty (-1)^{n-1}a_n\) converges.
'통계' 카테고리의 다른 글
limsup <=> inf{sup} (0) | 2024.08.03 |
---|---|
수열 수렴 판정법 (0) | 2024.06.26 |
LASSO, Ridge regression (0) | 2024.06.26 |
2d symmetric KL-divergence (1) | 2024.02.07 |
Rightarrow vs mapsto (1) | 2024.01.10 |