Trace
- \(tr(A) = \sum_{i=0}^{n}\lambda_i\)
Determinant
- \(det(A) = \prod_{i=0}^n\lambda_i\)
- Proof(맞는진 모름):
- \[det(A-\lambda I) = (-1)^n(\lambda-\lambda_1)...(\lambda-\lambda_n) = (\lambda_1 - \lambda)...(\lambda_n-\lambda)\]
- \[det(A-\lambda I)|_{\lambda=0}=det(A)=\lambda_1...\lambda_n\]
Rank
- \(rank(A) = number\ of\ nonzero\ eigenvalues.\)
\(\lambda\)가 eigenvalue of \(A\) 이면 \(f(\lambda)\)도 \(f(A)\)의 eigenvalue이다.
증명:f를 테일러전개하면 됨.
'전자 > 선형대수학' 카테고리의 다른 글
p-norm (0) | 2023.12.25 |
---|---|
Rank of an idempotent matrix is equal to the trace thereof (0) | 2023.12.25 |
4. Vector Spaces (0) | 2023.01.11 |
3. Inverses and LU Factorization (0) | 2022.01.22 |
2. Gauss Elimination (0) | 2022.01.07 |