Let \(p \geq 1\) be a real number, The p-norm (also called \(l_p\)-norm) of vector \(x=(x_1,...,x_n)\) is
$$||x||_p:=(\sum_{i=1}^{n}|x_i|^p)^{1/p}$$
- For p = 1 -> taxicab norm
- For p = 2 -> Euclidean norm
- For p = \(\infty\) -> \(max_i|x_i|\)
'전자 > 선형대수학' 카테고리의 다른 글
Generalized Eigenvectors (0) | 2023.12.25 |
---|---|
Jordan form (0) | 2023.12.25 |
Rank of an idempotent matrix is equal to the trace thereof (0) | 2023.12.25 |
Eigenvalue, trace, determinant and rank of a matrix 간의 관계들 (0) | 2023.09.15 |
4. Vector Spaces (0) | 2023.01.11 |