In this writing, I consider the KL divergence with measure theoretic approach.
Suppose
KL divergence is defined as below:
If we have density functions for
then the KL divergence can be expressed in the familiar form.
Just to be clear,
Since the Lebesgue measure is defined over a real interval, for the last expression,
'통계 > 확률론 및 수리통계학' 카테고리의 다른 글
Measure theoretic description of change-of-variables (0) | 2025.01.01 |
---|---|
Metric vs distance measure (0) | 2024.01.26 |
Is a pdf a probability measure? (0) | 2024.01.24 |
Covariance matrix의 다양한 이름들 & Autocorrelation matrix (0) | 2024.01.17 |
확률 P와 기대값의 부등식 (0) | 2023.12.25 |